

PII: S0040-4039(97)01574-8

Diels-Alder Cycloaddition of Substituted Norcaradienes with [60] Fullerene

Wolfram Duczeka, Wolfgang Radecka, Hans-Joachim Niclas, Matthias Ramm, Burkhard Costisella

WITEGA Angewandte Werkstoff-Forschung g.GmbH ^a, Rudower Chausse 5, D-12489 Berlin, Germany SKW Stickstoffwerke Piesteritz GmbH ^b, Möllensdorfer Strasse 13, D-06886 Lutherstadt Wittenberg, Germany Freie Universität Berlin, Institut für Kristallographie ^c, Takustrasse 6, D-14195 Berlin, Germany Institut für Angewandte Chemie Berlin-Adlershof ^d, Rudower Chaussee 5, D-12484 Berlin-Adlershof, Germany

Abstract. Substituted norcaradienes, generated by - Rh₂(OAc)₄ catalyzed - cyclopropanation of toluene and benzene with tert-butyl diazoacetate, reacts with [60]fullerene to form a new type of fullerene cycloadducts.
© 1997 Elsevier Science Ltd.

Because of the interesting physical and biological properties of fullerene derivatives, chemical modifications of C_{60} by selective bond formation have been intensively explored, recently.¹⁻³ Cycloaddition reactions provide the most successful method for the functionalization of fullerene.^{4,5} Since the first synthesis of a methanofullerene research in this field has expanded rapidly in many directions.⁶ Several methods are known including the thermal addition of diazo compounds,^{7,8} the reaction with free carbenes,^{9,10} the reaction with ylides,^{11,12} cyclopropanations with stabilized α -halocarbaniones,^{13,14} and the electrosynthesis by the reaction of C_{60} -dianions with dihalocompounds.¹⁵

The cyclopropanation of alkenes with organic diazo compounds can also be achieved by catalytic methods. ¹⁶ Catalytic decomposition reactions of diazo compounds are usually carried out in the presence of metals in different oxidation states. We investigated the metal catalyzed reaction of *tert*-butyl diazoacetate with [60] fullerene as a potential new and effective way for the synthesis of methanofullerenes.

In a typical experiment, 200 mg (277.52 μ mol) of [60]fullerene and 118 mg (832.56 μ mol) of tert-butyl diazoacetate were dissolved in dry toluene (150 ml), 10 mg (22.62 μ mol) of $Rh_2(OAc)_4$ was added, and the solution was stirred under argon for 6d. The colour of the solution changed from purple to brown. TLC showed only traces of the expected methanofullerene 6 ($R_f = 0.64$), but a new main product ($R_f = 0.53$; silica gel 60; toluene/n-hexane = 1/1) appeared. Preparative chromatography on silica gel yielded unconverted C_{60} (59 mg), a methanofullerene 6 (6 mg; 4% yield based on converted C_{60}), and the new derivative 5/ent-5 (78 mg; 43% yield based on converted C_{60}).

The ¹H NMR spectrum of 5/ent-5 shows seven signals at 1.53 ppm (s, 9H, tert-C₄H₉), 1.82 ppm (t, 1H, H_A), 2.33 ppm (s, 3H, olefinic CH₃), 2.89 ppm (m, 2H, H_B and H_C), 4.30 ppm (m, 1H, H_D for 5, H_E for ent-5), 4.42 ppm (m, 1H, H_E for 5, H_D for ent-5) and 6.55 ppm (d, 1H, olefinic H). The proton decoupled ¹³C NMR spectrum displays 44 signals of the C₆₀ skeleton (42 between 155.89 and 136.32 ppm; two for the sp³ hybridized carbons at 71.56 and 71.25 ppm). The remaining 11 signals are assigned to the addend.¹⁷ Correlation between the ¹H and ¹³C atoms allowed the identification of the structure as 5/ent-5 (2D-¹³C-¹H ghmqc and 2D-¹³C-¹H ghsqc investigations on an VARIAN UNITY plus 500 MHz). The UV-VIS absorption

spectrum in toluene shows a strong absorption at 433 nm. This absorption is characteristic of the dihydro-fullerene structure, thus indicating that the cycloaddition took place at a junction of two six-membered rings. The IR spectrum exhibits characteristic bands of the fullerene moiety and a C=O absorption at 1710 cm⁻¹. The positive ion FAB mass spectra shows the molecule ion peaks at m/z 927 [M]⁺ (FISONS AUTOSPEC triple sector instrument). All analytical data are in agreement with the proposed structure.

N₂CHCOO-t-Bu

1

$$Rh_2(OAc)_4$$
 $-N_2$

COO-t-Bu

 Rh_3C
 C_{60}

1-Bu-OOC

 Rh_3
 Rh_4
 Rh_5
 Rh_5

Scheme 1 describes the cycloaddition of 3 to C_{60} . The $Rh_2(OAc)_4$ catalyzed cyclopropanation of toluene by 1 yields the norcaradiene 3. The valence isomerization between the norcaradiene structure 3 and cycloheptatriene 4 is well known. The Diels-Alder reaction in most cases yields norcaradiene-type adducts such as the tricycloadduct 5/ent-5. In the same manner benzene reacts to the compound 5 in a yield of 24 % ($R^1 = R^2 = H$; without optimization). As expected, no reaction is observed using 1,1,2,2-tetrachloroethane as solvent.

Scheme 1

Surprisingly, we isolated only one racemic isomer as product of the "domino reaction". The regioisomer 3 is the main product of the cyclopropanation of toluene by the *tert*-butyl diazoacetate.²⁰ The Diels-Alder cycloaddition leads to an adduct with *anti* cyclopropane orientation relative to the entering dienophile C₆₀. We assume that the bulkiness of the ester group prevents the formation of the *endo*-isomer. Thus, for the cycloadduct 5/ent-5 the configuration anti/exo is assigned. This is in agreement with the observed coupling

constant of 2.9 Hz for the *trans* cyclopropane protons H_A and H_B. ¹H NMR studies using the NOE effect prove the *exo* orientation of the ester group. Irradiation of the H_A proton at 1.82 ppm causes the enhancement of the olefinic proton (10%).

The *tert*-butyl group of 5/*ent*-5 can be removed by TFA. 37 mg (39.92 µmol) of 5/*ent*-5 were dissolved in 10 ml of dichloromethane and 1 ml TFA. The solution was refluxed for 1 h, the solvent removed under vacuum and the brown solid washed three times with ether to get 32 mg (92% yield) of the free acid 7/*ent*-7. We condensed this acid with the leucine *tert*-butyl ester under standard conditions in 80% yield using dicyclohexylcarbodiimide (DCC), hydroxybenzotriazole (BtOH) and triethylamine (Scheme 2). As the splitted signals in the ¹H and ¹³C NMR spectra show, the product 8/8' is a diastereomeric mixture.²¹

5/ent-5

TFA / CH₂Cl₂

$$A$$

TFA | CH₃; $R^2 = H$

ent-7 $R^1 = H$; $R^2 = CH_3$
 R^3
 $R^3 = CH_2CH_2CH_3$
 R^3
 $R^3 = CH_2CH_2CH_3$
 $R^3 = CH_2CH_3CH_3$
 $R^3 = CH_2CH_3CH_3$

Scheme 2

REFERENCES AND NOTES

- 1. Diederich, F.; Thilgen, C. Science 1996, 271, 317-323.
- 2. Iyoda, M.; Yoshida, M. J. Synth. Org. Chem. Jpn. 1995, 53, 756-769.
- 3. Kroto, H. W.; Taylor, R.; Walton, D. R. M. Pure Appl. Chem. 1994, 66, 2091-2094.
- 4. Hirsch, A. Synthesis 1995, 895-913.
- 5. Sliwa, W. Fullerene Sci. Technol. 1995, 3, 243-281.
- 6. Diederich, F.; Isaacs, L.; Philp, D. Chem. Soc. Rev. 1994, 243-255.
- 7. Bestmann, H. J.; Moll, C., Bingel, C. Synlett 1996, 729-730.
- 8. Arias, F.; Echegoyen, L.; Wilson, S. R.; Lu, Q.; Lu, Q., Y. J. Am. Chem. Soc. 1995, 117, 1422-1427.
- 9. Li, Z. Z.; Bouhadir, K. H.; Shevlin, P. B. Tetrahedron Lett. 1996, 37, 4651-4654.
- 10. An, Y. Z.; Rubin, Y.; Schaller, C.; McElvany, S. W. J. Org. Chem. 1994, 59, 2927-2929.
- 11. Wang, Y.; Cao, J.; Schuster, D. I.; Wilson, S. R. Tetrahedron Lett. 1995, 36, 6843-6846.
- 12. Bestmann, H. J.; Hadawi, D.; Roder, T.; Moll, C. Tetrahedron Lett. 1994, 35, 9017-9020.
- Benito, A. M.; Darwish, A. D.; Kroto, H. W.; Meidine, M. F.; Taylor, R.; Walton, D. R. M. Tetrahedron Lett. 1996, 37, 1085-1086.
- 14. Bingel, C. Chem. Ber. 1993, 126, 1957-1959.
- 15. Boulas, P. L.; Zuo, Y. H.; Echegoyen, L. Chem. Commun. 1996, 1547-1548.

- 16. Doyle, M. P. Chem. Rev. 1986, 86, 919-939.
- 17. Selected data for 5/ent-5: ¹H NMR (500 MHz; CDCl₃, TMS): δ 6.55 (d, *J* = 6.69 Hz, 1H, olefinic H), 4.42 (m, *J* = 4.05 Hz, *J* = 6.69 Hz, 1H, H_E for 5, H_D for ent-5), 4.30 (m by longe range coupling, *J* = 3.65 Hz, 1H, H_D for 5, H_E for ent-5), 2.89 (m, *J* = 2.9 Hz, *J* = 3.65 Hz, *J* = 4.05 Hz, 2H, H_B and H_C), 2.33 (s, 3H, olefinic CH₃), 1.82 (t, *J* = 2.9 Hz, 1H, H_A), 1.53 (s, 9H, tert-C₄H₉); ¹³C NMR (125.70 MHz; CDCl₃, TMS, Cr(acac)₃): δ 171.48, 155.89, 155.24, 155.17, 154.83, 147.29, 147.32, 146.42, 146.35, 146.22, 146.09, 146.05, 146.01, 145.96, 145.86, 145.68, 145.55, 145.52, 145.43, 145.38, 145.32, 145.21, 144.58, 144.47, 144.33, 143.01, 142.91, 142.86, 142.46, 142.41, 142.27, 142.19, 141.99, 141.77, 141.54, 141.49, 141.44, 140.29, 139.99, 139.93, 139.84, 137.43, 136.35, 136.32, 123.93, 80.34, 71.56, 71.25, 50.09, 44.86, 28.04, 22.22, 21.79, 20.49, 20.07; UV/Vis (toluene): 404, 433, 639, 683, 692, 704; IR (KBr): 2380, 1710, 1510, 1315, 1255, 1180, 765, 530; FAB⁺ (matrix: o-nitrophenyl octyl ether): *m/z* 927 [M]⁺.
- 18. Isaacs, L.; Wehrsig, A.; Diederich, F. Helv. Chim. Acta 1993, 76, 1231-1250.
- 19. Menzek, A.; Balci, M. Tetrahedron 1993, 49, 6071-6078.
- 20. Maas, G. Topics Curr. Chem. 1987, 137, 174-179.
- 21. Selected data for 8/8': ¹H NMR (500 MHz; CDCl₃, TMS): δ 6.51 6.37 (2H), 4.65 (m, 1H), 4.39 (m, 1H), 4.26 (m, 1H), 2.96 (m, 1H), 2.92 (m, 1H), 2.31 (s, 3H), 1.81-1.61 (m, 4H), 1.53 1.55 (9H), 1.03 (m, 6H); ¹³C NMR (125.70 MHz; CDCl₃, TMS, Cr(acac)₃): δ 172.83, 171.08, 156.26, 155.51, 155.47, 155.08, 147.48, 146.56, 146.49, 146.37, 146.24, 146.20, 146.15, 146.09, 145.87, 145.80, 145.77, 145.59, 145.54, 145.467, 145.42, 145.30, 144.75, 144.64, 144.49, 143.19, 143.00, 142.59, 142.529, 142.44, 142.37, 142.15, 141.94, 141.70, 141.64, 141.53, 140.65, 140.42, 140.08, 140.02, 139.95, 139.90, 137.92, 137.82, 137.78, 136.45, 136.40, 124.20, 124.04, 82.15, 71.84, 71.55, 71.51, 51.54, 50.16, 50.17, 44.86, 44.82, 42.57, 42.48, 28.09, 25.01, 22.88, 22.85, 22.23, 22.21, 22.03, 21.74, 21.57, 21.01, 20.93, 19.87, 19.78.

(Received in Germany 30 May 1997; revised 14 July 1997; accepted 26 July 1997)